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HEAT TRANSFER AT A WEDGE IN A HYPERSONIC LOW~-DENSITY GAS STREAM
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Results are presented of an approximate analysis of steady heat trans-
fer on a sharp thin (sin 6 & 6 < 1) strongly cooled (ty <« 1) wedge,
washed by a hypersonic (M > 1) gas stream at zero angle of attack
under almost free-molecule conditions. Dimensionless parameters on
which the heat transfer depends have been established; approximate
formulas for estimation purposes are given,

The present analysis is not a rigorous quantitative theory and its results
should be regarded only as estimates; its conclusions may be useful
for experimental planning and for generalization of test data. The
method used here is analogous to that applied in [1] in analyzing flow
over a flat plate.

1. Initial statement and assumptions. The discus~’
sion is based on a coordinate system tied to the wedge
(see figure). Because the flow is symmetrical relative to
the plane bisecting the wedge vertex angle, only the up-
per halfis examined. For brevity the molecules of the
undisturbed flow are designated O-molecules below.

Those leaving the wedge surface (reflected) without
collision with molecules of other types, are called
W-molecules. As a result of collisions, O- and
W-molecules form OW-molecules. When OW-mole-
cules collide with O- and W-molecules, secondary
collision molecules are formed. The examination is
limited to conditions where secondary collision mole-
cules have a small probability of striking the wedge,
i.e., heat transfer is studied in the flow regime when
we need consider only the first collisions of incoming
and reflected molecules.

it is assumed that the W-molecules form a mono-
kinetic group, directed normal to the wedge surface,
the velocity V(W) of the group being determined by
the temperature of the wedge surface and correspon-
ding to the condition of total accommodation of mole-
cules striking the wedge. This assumption may be
regarded as a crude schematization of diffuse reflec-
tion, according to which the majority of reflected
molecules leave the surface almost normally (in con-
formity with the cosine law). The assumption of total

accommodation will evidently be satisfied in many
cases of practical interest. If necessary, however,
partial accommodation may be allowed for approxi-
mately by special designation of the velocity of the
W-molecules.

In the calculation of intermolecular collisions,
the assumption is made that the gas molecules are
perfectly smooth elastic spheres of identical mass.
The molecular velocities after collision are deter-
mined by the laws of collision of elastic spheres [2].
Moreover, because of the inequality ty, < 1 and M >
> 1, it is assumed, in ealculating the probable velo-
cities of OW-molecules, that the W-molecules are at
rest, while the O-molecules move with the velocity
of the undisturbed stream, V. .In that case the OW-
molecules are dispersed from some arbitrary point
in conformity with the cosine law for the velocity
values. The ends of the OW-molecule probable ve-
locity vectors V(OW), drawnfrom the point examined in
space, form a spherical surface (see figure). One group
of the OW-molecules formed close to the wedge sur-
face is directed towards the wedge (figure ; shadedpart
of vector diagram), while the other travels into space
away from the wedge. In determining the energy car-
ried to the wedge surface by OW-molecules, the
average kinetic characteristics of molecules directed
towards the wedge are used. Averaging reduces to
replacing the flux of OW-molecules directed toward
the wedge from the point in question by a monokinetic
beam or ray, in which the velocity of the molecules
is equal to the mean square of the probable velocities
directed towards the wedge. The molecules of this
beam are called A-molecules below. From the geo-
metry, and the condition that any of the OW-molecule
velocities shown on the vector diagram (figure a) is
equally probable, we may calculate the fraction of the
total number of OW-molecules formed at the point
examined representing A-molecules (6); the velocity
(V(A)) of the A-molecules; the angle between the

" normal drawn from the point examined to the wedge

surface and the direction of velocity V(A) (angle ¢)

1 1 0,
b=5(1+8), V(A)z——}—/—sz(i—l-;)' e=7. (1.1)

Here @ is the half-angle at the wedge vertex. In
deriving (1.1) we used the condition that 6 is small
(enabling us to neglect terms of order 6% in com-
parison with terms of order unity).

The number of collisions of O~ and W-molecules
has been determined by introducing a mean free path
for W-molecules, The beam of W-molecules becomes
attenuated with increased distance from the wedge
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surface due to collisions of W-molecules with S-
molecules existing in the space above the wedge.
Under the conditions examined there is a finite
number of groups in the space above the wedge into
which the S-molecules may be divided; they are
mainly O-molecules and OW-molecules. The mean
free path of W-molecules in an atmogphere of 8-
molecules is determined from the formula [3]

AW)=V (W)/a(S) F(WS)V (WS). (1.2)

Here w (S) is the number of S-molecules in unit
volume; V (WS) is the mean relative velocity of W-
and S-molecules before collision; F (WS) is the cross
section for collisions of W~ and S-molecules. In the
first approximation the number density of S-mole-
cules may be assumed constant and equal to that in
the undisturbed stream, while the relative velocity
V (WS) ~ V. If it is assumed that the cross section
does not depend on the relative velocity of the col-
liding molecules, then, taking account of the above
remarks, it follows from (1.2) that

M (W) = A2, (1.3)

If it assumed that the collision cross section is
inversely proportional to the relative velocity of the
colliding molecules [4], it follows from (1.2) that

AMW)=MEM  (t,=T,/To) . (1.4)

Here Ty, is the temperature of the wedge surface
(identical everywhere); T, is the adiabatic stagnation
temperature of the stream; A is the mean free path
of molecules in the undisturbed stream; and M is the
Mach number of the undisturbed stream. The number
of W-molecules knocked out of the monokinetic beam
through collisions, at an arbitrary point above the
wedge surface, may be expressed in terms of A(W)
as follows [3]:

QW) = ) exp 1k - (1.5)

Here Q(W) is the number of molecules knocked
out from the W-group (i.e., the number of collisions
in unit time and unit volume); n(W) is the number
of W-molecules leaving in unit time from unit sur-
face of the wedge at the point x.

In conformity with the initial conditions, it is as-
sumed that the A-molecules do not collide with mole-
cules of other groups.

In calculating the number of O-molecules reaching
the wedge surface, use was made of the method of
fictitious angle of attack [5]. The fictitious angle of
attack of is understood to be the angle at which the
flux of O-molecules with velocity V directed from the
undisturbed region to the area of the wedge under
examination, without taking thermal velocities into
account, will be equal to the flux to this area in
free-molecular flow, allowing for the thermal velo-
cities of the O-molecules

sin Of =

exp(— /. M?sin? 6)

V 2ny M sin 6 -(1-6)

=sin6{%—(1+erf Vij:1 Msin 0) +
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2. Number of O~ and OW-molecules incident on
the wedge. Examination of the O-molecule balance
in the volume element (1 x df) in the ray £, directed
at angle 4, to an arbitrary element of area (1 x dx)
on the wedge surface (figure b)leads to the equation

Yo (0)

V5

~—Q(W). 2.1)

Here w(O) is the number of O-molecules in unit
volume. In constituting the balance it is assumed, in
accordance with the statement of the problem, that
collisions above the wedge surface are mainly those
of O- and W-molecules.

Calculation of the number of O-molecules incident
on area (1 x dx) reduces to integration of (2.1). The
quantity n(W) entering into Q (W) is an unknown func-
tion of £. As a good enough first approximation when
calculating the number of O-molecules reaching area
(1 x dx), we may assume for the conditions in ques-
tion that n(W) is equal to the value occurring in free-
molecular flow [1]. This assumption is also used in
calculating the number of OW-molecules incident on
the area (1 x dx) (see below). From this assumption
and the condition that d¢ = —dy/sin b, it follows
from (2.1) that

0

7O) — 14 {exp(—ppap =exp(—atgh),

m B (202)
d y

&=y B:m, Bo=oatgl, .

Here n,, is the number of molecules incident on
unit area of the wedge in unit time in free-molecular
flow; n(0) is the number of O~molecules incident
on unit area of the wedge at point x in unit time. Ex-
amination of the A-molecule balance in the volume
element (1 x d&y) in the ray £, directed at angle ¢ to
the area (1 x dx) on the wedge surface (figurea) leads
to the equation

(8) _ 20 mwys . (2.3)

V(A) 3 =

Here w(A) is the number density of A-molecules;
2Q (W) is the total number of O-molecules formed in
unit volume near the point in space being examined
(the number of OW-molecules created is equal to the
number of collisions of O- and W-molecules). Taking
(1.1) into account, we have from (2.3)

) ot —exp (ol 2.4)

Here n (A) is the number of OW-molecules inci-
dent on unit area of the wedge. The number of W-
molecules leaving unit area of the wedge at the point
x may now be determined from the condition

n (W) = n (0} + n(4). (2.5)

The value of n(W) found in this way may be used
in seeking the second approximation for n(O) and n(A).
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3. Heat transfer to the wedge. The heat flux is de-
termined as the difference between the energy supplied
by the O~ and A-molecules and the energy removed
by the W-molecules. The energy .of monatomic mole-
cules is the kinetic energy of their translational mo-
tion. If the molecules are diatomic, account must in
general be taken of the internal energy of the mole-
cules. For the conditions examined (M > 1; ty <1)
the internal energy of the molecules, as well as the
kinetic energy of translational motion of the W-mole-
cules, is negligibly small in comparison with the
kinetic energies of the O~ and A-molecules. Taking
this into account, and also (1.1), (2.2), (2.4) for small
« and Z (the present theory is valid when « and Z are
small), we obtain the following approximate formulas:

q 1
_x_~1+

26
i S(1+0+3T—2tg0)a,

q 1‘,/ 26
q—-———~_. 1-}——4 \1+0—}———~2tg97>z,
(3.1)

Here, and subsequently, q;, is the specific heat
flux in free-molecular flow; qy is the local specific
heat flux; [ is the length of the generator of the wedge.
When M6 > 1, it follows from (3.1), allowing for (1.6)
that

Ix 1 26 q 1 20
Eﬂ:zi—\l—?(l—{-n——e)a, -—zi+z(l+n——e)z-(3'2)
When Mf <1, from (3.1), allowing for (1.6) and
the condition that 8 and 26 /7 are much less than the
quantity 1/M (which follows from the inequality M8 <

<« 1), we derive the formulas

% 1 24T e AT, (VA e
q—mz1+§[1—(ﬂ«) A—l]a, qm~1+4[1—-(m) M]z.(3.3)
Determination of the mean free path of W-mole-
cules according to (1.3) and (1.4), respectively, gives

R, R Y— A\ T M
R T ot P A YW =< 2 ) (T‘) )
T Ty w (3 4)
B R, 7 R _('r——i)‘/z(_zl)'/zi,
T omriass el T T Mraoss el N 2 T, K
°p o _v M
(”r=—c;’ A=t R =L k=7). 69

Here p, T, u are, respectively, density, thermody-
namic temperature, and viscosity of the gas in the
undisturbed stream; cp and cy are the isobaric and
isochroic specific heats. In conclusion, it should be
noted that: a) the heat fluxes in near free-molecular
hypersonic flow over a wedge may noticeably exceed
the values following from free-molecular flow theory
(formulas 3.1)~(3.3)). When M6 < 1, this effect di-
minishes with increase of 6 (formula (3.2)), and when
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M6 << 1 it diminishes with decreasing M (formula
(3.3)); b) the values of the local and average Stanton
numbers in near free-molecular flow depend, respec-
tively, on « and Z (formulas (3.1)—(3.3)), and, in ad-
dition, when M@ > 1, on 0 (see (3.2)), and when Mf <
«1, on M (formuia 3.3)).

The results of the present analysis agree with the
predictions made in {4]. I is interesting to compare
the second formula in (3.3), valid in the special case
M@ = 0, with the results of [5], in which a study was
made in a more strict formulation of the heat trans-
fer on a circular plate under conditions similar to
those examined here, yielding the formula

q
. 3.6)

m

M T\
=14+0,0725% | 7
+00m25 % (Tw)
If the molecule collision cross section is consi-
dered constant and y = 1.4, (3.3) takes the form

q—::z 140411 %4 (%)1/’[15 (%-)Q%} 3.7)

For very large M the second term in the square
brackets in (3.7) may be neglected, when an expres-
sion identical with (3.6) is obtained. A certain dif-
ference in numerical coefficients between (3.6) and
(3.7) may be explained by inaccuracies due to the
assumptions made, as well as to the fact that a
circular plate was examined in [5], while here we
have a plate of infinite extent. The conclusions of
the present work are confirmed qualitatively by re-
sults of experimental investigations [6]. (The data of
[6] were obtained at small values of the temperature
factor t, = 0.5—-0.8, and may therefore be admitted
here only to verify the qualitative conclusions).
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